Oneindige verzameling


In de verzamelingenleer, een deelgebied van de wiskunde, is een oneindige verzameling een verzameling die geen eindige verzameling is. Oneindige verzameling kunnen zowel aftelbaar als overaftelbaar zijn.

Enkele voorbeelden zijn:

Bij oneindige verzamelingen heeft de uitspraak dat \({\displaystyle A}\) groter is dan \({\displaystyle B}\) geen eenduidige betekenis. De verzameling \({\displaystyle A}\) kan bijvoorbeeld alle elementen van \({\displaystyle B}\) bevatten en nog meer, terwijl er wel een bijectie van \({\displaystyle A}\) naar \({\displaystyle B}\) bestaat.

Eigenschappen


De verzameling van natuurlijke getallen (waarvan het bestaan wordt gewaarborgd door het axioma van oneindigheid) is oneindig. Het is de enige verzameling waarvan de axioma's rechtstreeks vereisen dat zij oneindig is. Het bestaan van enige andere oneindige verzameling kan binnen de Zermelo-Fraenkel-verzamelingenleer (ZFC) alleen worden bewezen door aan te tonen dat deze direct volgt uit het bestaan van de natuurlijke getallen.

Een verzameling is dan en slechts dan oneindig als voor elk natuurlijk getal de verzameling een deelverzameling heeft, waarvan de kardinaliteit gelijk is aan dit natuurlijk getal.

Als het keuzeaxioma opgaat, dan is een verzameling dan en slechts dan oneindig als deze verzameling een telbare oneindige deelverzameling bevat.

Zie ook











Categorieën: Verzamelingenleer | Kardinaalgetal




Staat van informatie: 21.12.2020 08:07:18 CET

oorsprong: Wikipedia (Auteurs [Geschiedenis])    Licentie: CC-BY-SA-3.0

Veranderingen: Alle afbeeldingen en de meeste ontwerpelementen die daarmee verband houden, zijn verwijderd. Sommige pictogrammen werden vervangen door FontAwesome-Icons. Sommige sjablonen zijn verwijderd (zoals 'artikel heeft uitbreiding nodig') of toegewezen (zoals 'hatnotes'). CSS-klassen zijn verwijderd of geharmoniseerd.
Specifieke Wikipedia-links die niet naar een artikel of categorie leiden (zoals 'Redlinks', 'links naar de bewerkpagina', 'links naar portals') zijn verwijderd. Elke externe link heeft een extra FontAwesome-Icon. Naast enkele kleine wijzigingen in het ontwerp, werden mediacontainer, kaarten, navigatiedozen, gesproken versies en Geo-microformats verwijderd.

Belangrijke opmerking Omdat de gegeven inhoud op het gegeven moment automatisch van Wikipedia wordt gehaald, was en is een handmatige verificatie niet mogelijk. Daarom garandeert LinkFang.org niet de juistheid en actualiteit van de verkregen inhoud. Als er informatie is die momenteel verkeerd is of een onjuiste weergave heeft, aarzel dan niet om Neem contact op: E-mail.
Zie ook: Afdruk & Privacy policy.