Axioma


Een axioma (of postulaat) is in de wiskunde en de logica, sinds Euclides en Aristoteles, een niet bewezen, maar als grondslag aanvaarde bewering. Een axioma dient als grondslag voor het bewijs van andere wiskundige beweringen of stellingen. Een axioma maakt deel uit van een deductief systeem. In de wiskundige logica heet een deductief systeem een theorie. Bij het opstellen van een theorie gelden de volgende beperkingen:

Als axioma's met elkaar in tegenspraak zijn, dan is een theorie inconsistent. Een axioma dat uit andere axioma's afgeleid kan worden, is geen axioma, maar een bewezen stelling. Een verzameling van axioma's is dan ook de kleinst mogelijke verzameling van veronderstellingen die een theorie mogelijk maken.

Het woord komt van het Griekse axíōma (ἀξίωμα) 'dat wat waardig of geschikt wordt geacht' of 'dat wat zichzelf aanbeveelt als evident'.

Inhoud

Een voorbeeld van een theorie


De rekenkunde op basis van de axioma's van Peano is een voorbeeld van een theorie. Deze theorie definieert de natuurlijke getallen met onder meer de volgende vijf axioma's:

Ook de natuurkunde kent axioma's, bijvoorbeeld het postulaat dat de lichtsnelheid in een vacuüm hetzelfde is voor alle waarnemers die met constante snelheid ten opzichte van elkaar bewegen.

Eigenschappen


Twee belangrijke eigenschappen van een theorie zijn consistentie en volledigheid. Een theorie is consistent als er binnen de theorie geen tegenspraak afgeleid kan worden. Een theorie is volledig als elke ware stelling die geformuleerd is in de formele taal van de theorie, binnen die theorie afgeleid (bewezen) kan worden.

De hierboven genoemde rekenkundige theorie van Peano is consistent, maar niet volledig - Gödels onvolledigheidsstelling bewijst dat elke consistente theorie die ten minste Peano's rekenkunde omvat, een ware stelling bevat die onbewijsbaar is binnen die theorie. Die theorie is daarmee dus onvolledig.

Bekende axioma's


Synoniemen


Verwante begrippen


Een presuppositie is ook een voor waar aangenomen stelling, maar een die sterk afhankelijk is van de gegeven context.

Zie ook











Categorieën: Logica | Formele wetenschap | Wiskundige terminologie




Staat van informatie: 27.09.2021 07:37:20 CEST

oorsprong: Wikipedia (Auteurs [Geschiedenis])    Licentie: CC-BY-SA-3.0

Veranderingen: Alle afbeeldingen en de meeste ontwerpelementen die daarmee verband houden, zijn verwijderd. Sommige pictogrammen werden vervangen door FontAwesome-Icons. Sommige sjablonen zijn verwijderd (zoals 'artikel heeft uitbreiding nodig') of toegewezen (zoals 'hatnotes'). CSS-klassen zijn verwijderd of geharmoniseerd.
Specifieke Wikipedia-links die niet naar een artikel of categorie leiden (zoals 'Redlinks', 'links naar de bewerkpagina', 'links naar portals') zijn verwijderd. Elke externe link heeft een extra FontAwesome-Icon. Naast enkele kleine wijzigingen in het ontwerp, werden mediacontainer, kaarten, navigatiedozen, gesproken versies en Geo-microformats verwijderd.

Belangrijke opmerking Omdat de gegeven inhoud op het gegeven moment automatisch van Wikipedia wordt gehaald, was en is een handmatige verificatie niet mogelijk. Daarom garandeert LinkFang.org niet de juistheid en actualiteit van de verkregen inhoud. Als er informatie is die momenteel verkeerd is of een onjuiste weergave heeft, aarzel dan niet om Neem contact op: E-mail.
Zie ook: Afdruk & Privacy policy.